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Abstract 

Single-crystal X-ray diffraction data contain in prin- 
ciple complete information on the spatial distribution of 
the bonding electrons. However, this information is 
subject to a variety of errors. Nuclear quadrupole 
resonance spectroscopy (NQR) provides a very sen- 
sitive measurement of an electrostatic property of the 
deformation density; the electric field gradient tensor at 
the site of a nucleus. It is proposed that diffraction 

0567-7394/79/040652-07501.00 

and N Q R  data are combined so that more reliable 
charge densities can be obtained. Well known multipole 
deformation functions are used to describe a quasi- 
static and parametrized deformation density. The 
electric field gradient is computed by a Fourier series 
and expressed as a function of the same deformation 
parameters. These can then be refined by least-squares 
calculations simultaneously with respect to diffraction 
intensities and N Q R  results. Overlap corrections of the 
neutral spherical atoms and the effect of temperature 
vibrations are discussed. 

© 1979 International Union of Crystallography 
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Introduct ion 

In recent years, the determination of bonding electron 
distributions with least-squares refinements using 
aspherical atom formalisms has shown great promise 
(Hansen & Coppens, 1978). The asphericity of an atom 
is generally described by the electron populations of a 
set of nucleus-centred functions R(r)Y(O,~p) where the 
angular part Y is a spherical harmonic (Stewart, 1973) 
and the radial part is of the form R (r) = r ' exp ( -~ r ) .  
Hirshfeld (1971) and Harel & Hirshfeld (1975) use a 
set of non-orthogonal functions which are linear 
combinations of spherical harmonics. Assuming that 
the electron cloud follows the vibrating nucleus, the 
aspherical atomic electron density at rest is convoluted 
with a standard Gaussian thermal displacement distri- 
bution. These multipolar models provide thus a 
parametrized estimate of the static charge density 
(Hirshfeld, 1977a). 

The calculation of certain physical properties from 
the charge density distribution was proposed by 
Stewart (1972). Electrostatic quantities in crystals such 
as electric fields, field gradients, and dipole moments of 
molecular species are almost exclusively determined by 
the deformation density. Fields and field gradients at 
the atomic centers in a crystal composed of spherically 
symmetric neutral atoms (procrystal) are small and due 
only to atomic overlap. The electric field gradient at the 
position of a nucleus possessing a quadrupole moment 
can be measured by NQR, or by M6ssbauer spectros- 
copy, and is therefore of special interest since it can 
serve as an independent check on the quality of 
an experimental deformation density. There are, how- 
ever, two fundamental difficulties in such a procedure: 

(a) The thermally averaged deformation density is 
obtained from X-ray diffraction, whereas NQR gives 
the vibrational average of the field gradient. The latter 
is determined in good approximation by the static 
deformation density (see below). The use of a multi- 
pole model is therefore essential to achieve an approxi- 
mate deconvolution of temperature vibrations and 
charge density. 

(b) The field gradient at a nuclear site is strongly 
dependent on a possible quadrupole deformation of the 
core electron distribution resulting from chemical 
bonding, since the contribution of a volume element at 
a distance r from the nucleus is proportional to r -3. The 
deformation density near the atomic center can, how- 
ever, not be determined reliably from diffraction data. 
Hirshfeld & Rzotkiewicz (1974) have shown that 
dipole core deformations due to chemical bonding are 
probable. Stewart (1977) concludes from theoretical 
calculations on N 2 that the relevant quadrupole 
deformations are well within the resolution of the 
diffraction experiment, indicating that meaningful field 
gradients can indeed be computed from deformation 
densities. 

The precision of an experimental charge density 
determination is subject to a variety of errors (Cop- 
pens, 1975). The information contained in the structure 
factors on the distribution of the valence electrons is 
weak but complete, subject to the experimental 
resolution and assuming that the phases are known. 
The electric field gradient tensor depends only on the 
quadrupole component of the total charge density 
centered on the nucleus. Qualitatively similar electron 
distributions can produce rather different gradient 
tensors. The information obtained by NQR is thus reli- 
able but incomplete. The effective tensor VE is in fact 
described by at most five independent terms, its trace 
VEI~ + VE22 + VE33 with respect to a Cartesian coor- 
dinate system being zero. How then should a charge 
density determined by X-ray diffraction be modified if 
it does not reproduce the measured field gradient? To 
answer this question, both types of experimental 
evidence must be expressed as functions of the same 
parameters, and we can then refine these parameters 
simultaneously with respect to diffraction intensities 
and NQR results. For this purpose, we propose to use 
the population factors and exponents of an aspherical 
atom formalism. 

Hirshfeld's  de format ion  funct ions  

We use in the following the deformation functions given 
by Hirshfeld to describe the bonding density in a crystal. 
This choice was dictated to a large degree by the avail- 
ability of a well established and documented computer 
program (Hirshfeld, 1977b). The spherical harmonics 
of the program MOLLY (Hansen & Coppens, 1978) 
would serve equally well. 

The electron density of a stationary atom in the 
crystal is assumed to be 

P= Po + ~- N("'[~t c~"'r" c°sn ~"'] exp(-ar)' 

(n + l )a  n+3 
1 < 1 < ~(n + 1)(n + 2 ) , N  (n) = (1) 

4rt(n + 2)! 

Po is the spherical free-atom density, qB~,) is the angle 
between the radius vector r and the axis of the lth 
deformation function of order n, and c~ ~ is an 
occupation factor. N ('~ normalizes the integral over 
even functions to unity. The corresponding scattering 
factor is then 

f = f o  + ~-~ c~ ") &f/")(a). (2) 
n ! 

With n ranging from 0 to 4, 35 deformation functions 
and 36 deformation parameters may be refined for an 
atom in a general position. The anisotropic temperature 
factor is applied to the total scattering factor. The axes 
of the deformation functions are chosen in a local 
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atom-centered Cartesian coordinate system in direc- 
tions related by cubic symmetry: 100__O for n = 1; 
1 + 1 0 0  for n = 2; 1 + 1 0 0 ,  111 and l i l y  for n = 3; 
1 0 0 0  and A + I + I ( ~  for n = 4 (O means cyclic 
permutation, A = V/2 -- 1). These 35 non-orthogonal 
functions can be expressed as sums of spherical 
harmonics, comprising three monopole terms (n = 0, 2, 
4), two dipole terms (n = 1, 3), two quadrupole terms 
(n = 2, 4), one octopole (n = 3) and one hexadecapole 
term (n = 4). They represent thus a very flexible 
expansion of the atomic asphericity. Their transfor- 
mation properties are in general not simple. They can 
be derived by writing the sum of the ½(n + 1)(n + 2) 
functions of order n in the algebraic form 

~UVW"*  , I  - -  , 

i 0 0 0  

(u + v + w = n), (3) 

where the ½(n + l)(n + 2) coefficients -u,,,a(") transform as 
the totally symmetric tensor of order n. The number 
Z (") of independent functions or coefficients of order n 
for an atom with a given point symmetry can thus be 
obtained by group theoretical methods (Bhagavantam, 
1966). If 2~(")(x) is the character of the transformation 
of the deformation functions for the symmetry 
operation x, and h the order of the group: 

1 
Z (n) = _ X(")(x), (4) 

h 

the sum extending over all symmetry operations. The 
c} ") and a (,,'~ are related by a system of linear equations. 

The characters are listed in Table 1 for n = 1 
through 6. While (4) is useful as a check against errors, 
the relevant symmetry constraints are easily derived by 
inspection for all subgroups of m3m. One of the 
advantages of Hirshfeld's deformation functions is in 
fact their intuitive simplicity. Hexagonal and higher 
symmetries require, however, special considerations. A 
tensor of order x possesses cylindrical symmetry in the 
presence of proper rotations of order x + 1 or higher. 
This implies the same relations between the occupation 
factors c} 4) (n = 4) for all hexagonal groups. Denoting 
these occupation factors by the indices of their main 

Table 1. Characters X(")(x) of the transformation 
matrices of  deformation functions of  order n for 

rotations + 2n/x 

The  c h a r a c t e r s  for  r o t a t i o n - i n v e r s i o n s  k are  X("}(.~) = ( -  1)"X("}(x). 

x =  1 2 3 4 6 

X u) 3 - 1  0 1 2 
X (2} 6 2 0 0 2 
X °} 10 - 2  1 0 1 
)C (4} 15 3 0 1 0 
%(5) 21 - 3  0 1 0 
Z (6) 28 4 1 0 1 

axes and orienting the cylinder axis along 001, we 
obtain: 

(11A) = (i 1A) = (1 iA) = (i  iA); 
(100) = (010) = 8/(2 + a2) 2 {_(11A)}; 
( A l l ) =  ( A I D =  ( A l l ) =  (A1 1)=  (1A1) 

= ( iA 1) = (1A i)  = ( i A i ) ;  (001). 

These relations become more complicated for A :/: 
v/-2_ 1. 

Spherical symmetry for n = 4, i.e. a pure monopole, 
implies the same occupation factors for all functions 
1 0 0 0  and for all A + 1 + 1 0  w i t h  the additional 
condition ( A l l )  = (10.5 - 6V/2){(100)}. The cylin- 
drical symmetries for all other n can be derived by 
inspection. The effect of a sixfold inversion axis 6 on 
the functions n = 3 introduces, however, special 
constraints. The cl 3) are for 62m (twofold axis along 
100): 

(111)= (lii) = - ( i i l )  =-( i l i ) ;  
(101) = ( 1 0 1 ) = - 2 B { ( l I 1 ) } ;  

(110) = ( 1 i 0 ) = - B { ( 1 1 1 ) } ;  (011) = (01i) = 0; 

B = 2V/2/3V/3. 

For symmetry 6, we obtain: 
(11 l ) = - ( i i 1 ) ;  (1 [ i )  = - ( 1 1 1 ) ;  

(110) = - B { ( I  11)}; (1 i0) = - - B { ( I  i J)}; 

(101)=  (10i) = - - B { ( I l I )  + ( l i i ) } ;  

(011) = (01 i) = - -B{(111) - -  ( l i  J)}. 
With these relations, all point symmetries of atomic 
sites can be treated. Only the group 6 presents a 
complicated situation. 

In a centrosymmetric structure, the deformation 
model simply parametrizes the residual electron density 
found in a difference synthesis, as far as it is flexible 
enough to account for all significant features, and it 
filters random errors. We do not try to attach any 
physical significance to the individual parameters which 
are often highly correlated and we do not attempt to 
reduce the number of parameters by introducing local 
or chemical symmetries if the available memory space 
in the computer permits this. In non-centrosymmetric 
structures where the phases cannot be deduced from 
the spherical atom model, there may well be several 
combinations of deformation functions capable of 
adequately reproducing the observed structure factors. 
If the structure possesses centrosymmetric projections, 
the danger of such ambiguities will certainly be 
reduced. The introduction of supplementary infor- 
mation such as electric field gradients is also expected 
to favor a unique solution. 

Electrostatic  quantities and Fourier  series 

With respect to a Cartesian coordinate system, any 
electrostatic quantity ~ at the position R = (R IR2R3) is 
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given by 

= f g(R -- r)p(r) dr, (5) 

where p(r) describes the distribution of all charges in 
the crystal, i.e. electrons and nuclei, and the integration 
extends over the complete crystal volume. For the 
potential ~, the field E and the field gradient tensor 
element VEmn, we obtain respectively 

1 r 3r mr n - -  t~mn I r l 2 
g ( r ) =  Irl ; Irl 3 ; Irl 5 , (6) 

with I rl 2 = r  2 + r  2 + r ~ .  
The trace of VE is zero. It is conceivable to carry out 

the integration in direct space and to express e in terms 
of monopole, dipole and higher moments which are all 
functions of the deformation parameters. Overlap 
corrections for neighboring atoms and the effect of the 
electron cloud around the position R would have to be 
included. A summation in reciprocal space is, however, 
preferable (Bertaut, 1952, 1978) since s is the con- 
volution of g(r) with p(r). The Fourier transforms Ge(s) 
of g(r) are 

1 2i 
G g ( s ) -  n l s l  2 , [q~]; [sI2S,[E]; 

4n 
3 l s l  2 (3SmSn--C~mnlsl2),[Vgmn ], (7)  

s = (s~s2s 3) is a reciprocal vector. The Fourier 
transform Gp(s) of a per iodic  charge distribution is 
given by the structure factors including the nuclei 

Gp(s) = V -I F. =Jp(r)  exp (2zcisr) dr 

for s = hla* + h2a* + h3a* (8) 

and is zero otherwise. The mean charge density as seen 
by a nucleus executing thermal vibrations is, however, 
not strictly periodic, e is equal to the Fourier transform 
of GgGp; 

e, = f GgG, exp(--2ztisR) ds, (9) 

which, for a periodic charge distribution, gives 

1 I 
= - -  ~-' Fs exp(--27tisR), 

~zV /..., 
$ 

2i 1 
E = - -  ~-' ~ sF~ exp(--2zcisR), 

V ~ ISl  2 
$ 

4n 1 
VEmn -- ~ ~ (3StaSh -- ¢~mn I S i2)F$ 

3 V  I s l  E 
$ 

× exp(-2rt isR),  (10) 

the sums extending over all reciprocal lattice vectors. 
These formulae obviously represent real quantities 
since F s = F*. The Fourier summations are more 

efficiently calculated if the coordinate system is defined 
by the unit translations of the crystal lattice where R = 
~ x i a  I and s = ~h ia* .  The tensors e are defined in the 
reciprocal coordinate system. They transform covari- 
antly with the coordinates h i and contravariantly with 
the coordinates x~. Introducing the superscript (c) to 
denote the crystal coordinate system and replacing s by 
h, we obtain finally the tensor components 

2 1 
: S tab cos(2 hR) 

zcV 
+h 

+ Bh sin(2~zhR)l, 

4 h m 
Eft) = -  z.., ~ ~ [Ah sin(2~zhR)- Bh cos(2~zhR)l, 

V 
+h 

8rr 
V E  (c) = ~ ~ ,  [hmhn/I h 12 - (aman)/3 ] 

m n  V 
+h 

× [Ah cos(27thR) + Bh sin(2~zhR)], 

hR = hlX l + h2x 2 + h3x3; Fh = A h  + iBh. (11) 

The sums (+h) extend over half the reciprocal space. 
The condition that trace (VE) = 0 is now expressed by 

VEmn(C) (a m, a n* ) = O, (12) 
m ) n  

which can be verified by recognizing that 
~.m,n(aman)(aman) = trace (M.M*)  = 3, M and M* 
being the direct and reciprocal metric tensors respec- 
tively. In fact, by calculating the derivatives of ¢~(c) with 
respect to xi, div grad q~ = Aq~ = 4~zp(R) is obtained. 

The crystal symmetry is introduced in the same way 
as in an electron density calculation. Considering the 
symmetry transformation (B, tB) acting on the coordin- 
ates in real space where (B) and t B are the rotational 
and translational parts respectively, the structure factor 
of the reflection h' = (/~)h is 

Fh, : Fh exp(--2zHhtB). (13) 

The sum over a set of equivalent reflections then 
becomes 

1 
• (~)(sym) - - -  F h ~ exp[--2zcih(BR + ts)] (14) 

~zVIhl 2 B 

and similarly for E and VE. The calculations are thus 
reduced to sums over symmetrically independent terms. 
The results may finally be transformed back into a 
Cartesian base by E = (R)E (c) and VE = (R)VE(C)(/~), 
where (R) transforms the reciprocal coordinates and 
the real coordinate axes into the Cartesian system. 

Equivalent  charge  densit ies  and overlap correct ions  

As is well known (Bertaut, 1952), the series (11) do not 
converge due to the nuclear point charges. However, 
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equivalent charge distributions can be derived which 
yield the same electrostatic quantities. Thus, any 
spherical neutral charge distribution, corresponding to 
the condition . f 4 n r 2 p ( r ) d r  = 0, will not contribute to 
the quantities v., provided that it does not extend to the 
position R. Equivalent charge distributions can there- 
fore be obtained by subtracting spherical neutral non- 
overlapping atoms centered on the nuclear positions, 
the number of their electrons being equal to the nuclear 
charges. For the potential {P, the contribution of the 
electrons of the atom centered at R has to be added, 
their contribution to the field and the field gradient 
being zero. By subtracting free spherical atoms as used 
in a normal structure refinement, i.e. the electron 
density of the procrystal, the deformation density 
discussed above is obtained. However, these atoms 
overlap at R and an appropriate overlap correction for 
nearest neighbors must be devised. 

I n t e r n a t i o n a l  Tab les  f o r  X - r a y  C r y s t a l l o g r a p h y  
(1974) quote the free spherical atom form factors in the 
analytical approximation 

4 

f =  ~. a i e x p ( - - b i 2  -2 sin20) + c, (15) 
i=1 

all neutral atoms having positive b i values. The 
coefficients are optimized in the sin/9/2 region from 0 
to 2/k -1. The more uncertain scattering factor at larger 
reciprocal distances is, however, mainly due to the 
atomic cusp density which behaves as an electric mono- 
pole at distances not too near to the atomic center. The 
Fourier inversion of (15) is therefore sufficiently 
accurate for the required overlap correction. The 
charge density for atomic number Z is thus given by 

4 

p(r)  = t~(r ) (Z  --  c) --  8~t 3/2 ~ albT 3/2 exp(---~r20 -2) dr, 
i=l (16) 

i.e. by a sum of Gaussian distributions with variances 
a~ = bi/(8rc2). In a Cartesian coordinate system, the 
electrostatic quantities e at position d due to a Gaussian 
charge distribution centered at the origin are, in 
analogy to (5), 

e. = ( 2 z O - 3 / 2 0 - 3 f g ( d  --  r) exp(--½r20 "-2) dr. (5') 

This integral can be directly evaluated for @, E and VE: 

l 
,t, = -  r(t), 

Idl 

d , 2  
E = -  [ / ' ( t ) -  t e x p ( - : t  )l, 

I d l  3 

VE,,,, = - 
3d,,,d,, - 6,,,, I dl 2 

Idl 5 

[ 2 ] 
r ( t )  - -  (t  3 + 3t)exp(-½t 2) , 

3 X/~2~ 

2 t 

F(t) = - ~ !  exp(-½x2)dx, 

I d l  
t - (17) 

o 

The vector d points a w a y  from the origin. Insertion into 
(16) gives for the field gradient due to the complete 
atom; 

3d,,,d,, - 6 , , .  I dl 2 ( 
r e . .  = -  i i; / z - c  

- ~ a, t,) (t? + 3t,)exp(-½t~) , 
1--1 

t l =  2zcI dl ~ .  (18) 

This converges to zero for I d l = 0 or oo, since the trace 
of the tensor is zero and Xa i + c = Z. The overlap 
correction is therefore easily evaluated. For the site of 
AI in the low-quartz structure of AIPO4, it amounts to 
a few percent of the observed field gradient and is 
opposite in sign to the contribution of the deformation 
functions (Ngo Thong & Schwarzenbach, 1979). This 
shows that VE is due almost exclusively to the 
deformation density. 

T e m p e r a t u r e  v i b r a t i o n s  

Relaxation times in a NQR experiment are of the order 
of seconds so a thermally averaged field gradient is 
observed. This is, however, not the same as the tensor 
computed from a thermally averaged charge density. 
The Debye-Waller temperature factor describes the 
average electron density in terms of smeared atomic 
densities which are convolutions of stationary densities 
P0 with a probability distribution p, Pr = P~'P (Cochran, 
1954), i.e. Pr  is a superposition of spherical densities. 
Assuming that the nuclei and their electron clouds 
execute the same vibrations, a neutral spherical atom 
not overlapping with position R does not contribute to 
the electrostatic quantities e, regardless of the form ofp. 
Subtraction of anisotropicaily vibrating free atom 
densities from the thermally smeared total density thus 
leads to an equivalent thermally smeared density if the 
proper overlap corrections are considered for neigh- 
boring atoms. Equation (5) shows this correction to be 
the double convolution ~r = g*P*Po = P*80" This cannot 
be evaluated analytically if p is a general three- 
dimensional Gaussian distribution. An approximate 
solution is, however, obtained by a series expansion in 
terms of the atomic displacements. This leads to rather 
lengthy formulae which need not be reproduced here. 
From the observed anisotropic temperature parameters 
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in AIPO 4 (Ngo Thong & Schwarzenbach, 1979), the 
overlap correction is changed by about 10% which is 
only a few e.s.d.'s of the observed tensor elements and 
hence negligible. VE due to the thermally smeared 
charges can thus be obtained from the thermally 
smeared deformation functions in the same way as for 
the stationary crystal. As mentioned above, however, 
this is not the correct solution. The average V E at a 
nuclear position, i.e. VE as seen by the nucleus, 
depends on the joint probability distribution of this 
nucleus and the surrounding charge density p(R,r). 
Bragg X-ray intensities do not contain any information 
about this joint distribution since the correlations 
between the atomic displacements give rise only to 
thermal diffuse scattering. In other words, the correct 
VE has to be computed from a non-periodic charge 
distribution. Two limiting cases corresponding to 
independent and riding motion (Busing & Levy, 1964) 
can, however, be treated. 

For entirely uncorrelated vibrations, p(R,r) is the 
convolution of the individual probability functions 
p '(R) and p"(r). The temperature parameters of the 
atom at position R are therefore added to those of the 
neighboring atoms and the Fourier coefficients are then 
computed with these larger temperature factors. The 
atom at R itself is then, of course, considered to be at 
rest. The corresponding correction to VE can be evalu- 
ated by integration in real space. Especially for the all- 
important nearest neighbors, this model is certainly 
very unrealistic. 

Complete correlation implies a riding motion of 
neighboring atoms and their relative movement is then 
described by the difference of their temperature factors 
and that of the atom at R. If this difference motion is 
assumed for all atoms, the charge density retains trans- 
lational symmetry. The atom at R and all those 
equivalent by translation will then have zero tem- 
perature factors. The rotational symmetry of the crystal 
will in general be reduced to the point symmetry of 
position R. The full space-group symmetry may be 
retained by assigning difference temperature factors 
only to the atoms in a properly chosen asymmetric unit 
which should contain the nearest neighbors of the 
central atom at R. This model, although clearly unreal- 
istic for distant neighbors, is expected to be a better 
approximation to the exact solution and is also easily 
computed. 

Analogously, we use the sum of the temperature 
factors for all atoms in the asymmetric unit and a 
stationary atom at R, and then apply the full space- 
group symmetry to obtain an estimate of the thermal 
correction to VE in the worst case of uncorrelated 
vibrations. Our calculations on AIPO 4 (Ngo Thong & 
Schwarzenbach, 1979) indicate that this is negligible 
and that the stationary electron density gives satis- 
factory results. It is clear that any influence of the 
atomic vibrations on VE is due to optical phonons. 

Conclusion 

Electrostatic quantities, and especially the field 
gradients at the sites of the atomic nuclei can be evalu- 
ated by a simple Fourier summation (11) with the 
structure factors derived from the deformation func- 
tions alone. Acceptable results are obtained for a 
stationary structure. The series converges as fast as an 
electron density summation. VE is thus given in terms 
of the deformation parameters. Its derivatives with 
respect to these parameters are likewise obtained by 
Fourier summations, the coefficients being the 
derivatives of the structure factors. The calculation of 
the derivatives with respect to the positional parameters 
requires also the differentiation of (11) with respect to 
the components of R. A structure factor least-squares 
program for the refinement of deformation parameters 
(Hirshfeld, 1977b) computes all the necessary quanti- 
ties, and the calculation of VE or any other electro- 
static quantity can easily be introduced. Moreover, 
VE(deformation) = VE(observed)-  VE(overlap)can 
be added as a supplementary observation and the 
deformation and positional parameters refined with 
respect to the structure factors and VE simultaneously. 
This should result in more reliable electron density 
maps. We compute VE and its derivatives first in the 
crystal coordinate system according to (11), then 
transform to an orthogonal coordinate system and sum 
the respective terms in the matrix of the normal 
equations with user-supplied weights. A temperature 
correction for uncorrelated motion may be introduced. 
The procedure will be effective if the deformation 
functions are flexible enough to simulate the total 
quadrupole distortion of an atom and at the same time 
the electron distribution between the atoms. The actual 
electron density near the atom centers will not be 
obtained more accurately. 

The use of dipole moments as supplementary 
observations in charge density refinements is also 
possible and does not require the calculation of Fourier 
series in the least-squares program. The difficulty of 
such a procedure lies in the fact that dipole moments of 
molecules in the crystalline environment cannot be 
measured. We would like to stress here that generally 
any introduction of supplementary observations has its 
inherent dangers and causes uncertainties of a different 
kind due to the additional approximations involved. 
The results should be considered as model rather than 
experimental charge densities. The electron distribution 
is not directly observed. It is constructed in such a way 
that it reproduces a set of physical measurements. This 
is of course true for any standard structure 
determination. 

This project is supported by the Swiss National 
Science Foundation, grant no. 2.724-0.77. 
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Abstract 

The experimental determination of the electron distri- 
bution in quartz (SiO2) is problematic since the 
structure is pronouncedly non-centrosymmetric. The 
structure of AIPO 4 is derived from the quartz structure 
by replacing half the Si atoms by AI and the other half 
by P. The physical properties of the two substances are 
similar. The electric field gradient tensor VE at the site 
of AI (site symmetry 2) has already been measured. 
This electrostatic information, which is not available for 
quartz itself, is used in the determination of the charge 
density. Deformation parameters describing multipolar 
deformation functions are refined by least-squares 
methods with respect to X-ray data and the elements of 
the field gradient tensor simultaneously. A x refinement 
yielded the atomic charges + 1.4 for AI, + 1.0 for P and 
- 0 . 6  for O. The electron distribution obtained with a 
standard charge density refinement does not reproduce 
the correct VE. Inclusion of VE in the refinement leads 
to a different least-squares minimum. The minimum is 
ill-defined by the X-ray data alone, whereas VE 
stabilizes the phases of the superstructure reflections (l 
odd). VE is extremely sensitive to the deformation 
density distribution. The resulting deformation maps 
show the maxima and minima always in the same 
places~ but the inclusion of VE changes the heights 

0567-7394/79/040658-07501.00 

drastically and indicates the P - O  bond to be more 
covalent than the A I - O  bond. The trigonal arrangement 
of the lone-pair and bonding densities around the O 
atoms indicates sp 2 hybridization. This leads to bent 
covalent bonds, the angle A I - O - P  being 142.3 ° 
Double bonding appears to extend over nearly planar 
structural fragments defined by five atoms; meta l -  
oxygen--metal-oxygen-metal .  

Introduction 

Several oxides with the composition AInBVO4 form 
structures which can be derived from the isoelectronic 
SiO 2 modifications quartz, tridymite and cristoballite 
by replacing half the Si atoms by A and the other half 
by B. Buerger (1948) cites as examples BPO4, AIPO4, 
FePO o GaPO 4, BAsO 4 and AIAsO4. The relationship 
between A1PO 4 and SiO 2 is particularly close. A1PO 4 
forms all three structure types and shows the same 
polymorphic transformations at approximately the 
same temperatures as SiO2. Large crystals of the low- 
quartz form of A1PO 4 (mineral name berlinite) were 
grown by hydrothermal synthesis (Stanley, 1954). 
Their physical properties are very similar to those of 
quartz (Schwarzenbach, 1966a); the density, hardness, 
refractive indices and optical rotatory power being all 
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